Neutron Diffraction Experiments on CsCrl_{3} at 300, 77, and 1.2 K

H. W. ZANDBERGEN AND D. J. W. IJDO
Gorlaeus Laboratories, University of Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands

Received April 24, 1974; in final form August 6, 1979

Abstract

CsCrI_{3} has been investigated by neutron powder diffraction at room temperature and 77 and 1.2 K . It undergoes a phase transition at 150 K due to the cooperative Jahn-Teller effect. The high-temperature form, $\alpha-\mathrm{CsCrI}_{3}$ (hexagonal, space group $P 6_{3} / m m c, a=8.127(1) \AA, c=6.944(1) \AA, Z=2$), adopts the BaNiO_{3} structure with a local Jahn-Teller distortion. The low-temperature form, β - CsCrI_{3} (orthorhombic, space group Pbcn, $a=8.102(1) \AA, b=13.792(1) \AA, c=6.900(1) \AA, Z=4)$, has a structure not yet been reported for a Jahn-Teller distorted BaNiO_{3} structure. It is shown that the low-temperature form can be derived from the BaNiO_{3} structure by means of a canting of triangles, formed by the three common I^{-}ions of two adjacent $\mathrm{CrI}_{6}{ }^{4-}$ octahedra. The magnetic structure of $\beta-\mathrm{CsCrI}_{3}$ at 1.2 K is found to consist of an antiparallel sequence of ferromagnetic (0 01) planes with a magnetic moment in the $|100|$ direction of $3.16 \mu_{\mathrm{B}}$.

Introduction

The investigations on the compound described here are part of our current research on compounds in the series $A \mathrm{I}-B \mathrm{I}_{2}$, where A represents an alkali metal, In , or Tl and B a first-row transition metal, Zn, Cd, or Hg . Only two structure types occur for the investigated compounds $A B \mathrm{I}_{3}$: the BaNiO_{3} structure $(1,16)$ and the $\mathrm{NH}_{4} \mathrm{CdCl}_{3}$ structure $(2,16)$.

Two compounds ACrI_{3} have been found: RbCrI_{3} (H. W. Zandbergen, to be published) and CsCrI_{3} (3), both having distorted BaNiO_{3} structures.
Cr^{2+} and Cu^{2+} compounds are expected to distort due to a cooperative Jahn-Teller effect (4). Several distortions from the BaNiO_{3} structure have been reported. For CsCuCl_{3} (5) this effect leads to a destruction of the threefold axis (space group $P 66_{1} 22$) whereby the elongation of the octahedra is realized mainly by a shift of the Cl^{-}ions in
the (001) plane. $\mathrm{RbCrCl}_{3}(6,7)$ has two phase transitions. The low-temperature form, $\gamma-\mathrm{RbCrCl}_{3}\left(C 2_{1}\right)$, has a monoclinically distorted BaNiO_{3} structure with a doubled c-axis. $\beta-\mathrm{RbCrCl}_{3}$, which is also monoclinic $\left(C 2_{1} / m\right)$, has a partly averaged $\gamma-\mathrm{RbCrCl}_{3}$ structure. Because of this averaging the c axis is no longer doubled. RbCrI_{3} also has two phase transitions with structures equal to those of RbCrCl_{3}. In the $\beta-\mathrm{RbCrCl}_{3}$ and $\gamma-\mathrm{RbCrCl}_{3}$ structures the elongation of the octahedra is realized mainly by a shift of the Cl^{-}ions in the z-direction.

Experimental

Single crystals of CsCrI_{3} were grown by the Bridgman method. The sample used for neutron diffraction was prepared by melting a stoichiometric mixture of the binary compounds and-after powdering-annealing for 2 weeks in an evacuated glass tube at
$450^{\circ} \mathrm{C} . \mathrm{CrI}_{2}$ was prepared from the elements in an almost horizontal evacuated glass tube with one side, containing Cr , at $950^{\circ} \mathrm{C}$ and the other side, containing fluid I_{2}, at $200^{\circ} \mathrm{C}$. CrI_{2} was purified by sublimation. DTA measurements show a first-order phase transition taking place at 150 K . Measurements on a single-crystal diffractometer reveal the structure to change at this temperature from hexagonal ($T>150 \mathrm{~K}$) to orthorhombic. At about 100 K the crystal symmetry of the orthorhombic unit cell of $\beta-\mathrm{CsCrI}_{3}$ was determined from zero and upper-level Weissenberg photographs. It was not possible to transform a single crystal from the α - to the β-phase without twinning. Because the a / b ratio is not equal to $3^{1 / 2}$ it was still possible to determine the systematically absent reflections. It was found that $k=2 n+1$ was absent for $0 k l, l=2 n+1$ for $h 0 l$, and $h+k=2 n+1$ for $h k 0$. These results are consistent with the space group Pbcn. At room temperature, 77 K , and 1.2 K neutron powder diffraction diagrams (see Fig. 1) were recorded at the H.F.R. at Petten using $\lambda=2.5718(2) \AA$ with 30^{\prime} collimation in the angular range $4^{\circ}<2 \theta<139^{\circ}$. The sample holder consisted of a vanadium tube, closed by copper plugs fitted with rubber O-rings. The same sample was used for all three measurements. The diagram recorded at 77 K contained, in contrast with those recorded at room temperature and 1.2 K , some small extra reflections. This contamination is caused by leaking of oxygen and moisture into the sample holder, as the diagram of 77 K was recorded about 3 months after the other two. Because no information is available about oxyiodides and hydrates of CsCrI_{3} the contamination could not be identified. In the refinement the 2θ regions containing these reflections were omitted.

For the refinements Rietveld's profile program (8) was used. No absorption correction was applied. The coherent scattering lengths (9) used are $b_{\mathrm{Cs}_{\mathrm{s}}}=0.55, b_{\mathrm{C}_{\mathrm{r}}}=0.352$,
and $b_{\mathrm{I}}=0.53$ all in units of $10^{-12} \mathrm{~cm}$. The magnetic form factor was taken from Watson and Freeman (10).

Results and Refinements at Different Temperatures

Room Temperature

The refinement was started with the positions of the BaNiO_{3} structure. Full matrix refinement in space group $P 6_{3} / m m c$ of positional parameters and an overall isotropic thermal parameter leads to convergence at

$$
\begin{aligned}
R_{\mathrm{total}}= & \sum_{i} \mid I_{i}(\mathrm{obs}) \\
& -I_{i}(\mathrm{calc}) \mid / \sum_{i} I_{i}(\mathrm{obs})=0.44
\end{aligned}
$$

and

$$
\begin{aligned}
R_{\text {profile }}= & \sum_{i} \mid y_{i}(\mathrm{obs}) \\
& y_{i}(\mathrm{calc}) \mid / \sum_{i} y_{i}(\mathrm{obs})=0.098,
\end{aligned}
$$

where I_{i} is the intensity of the i th reflection and y_{i} is the intensity of the i th measured point.

Because several measurements on similar Jahn-Teller active compounds (11-13) suggest an elongation of the octahedra above the phase transition also, a model was introduced describing an averaged $\beta-\mathrm{CsCrI}_{3}$ structure. In this model the I^{-}ion is divided into three parts: one part above, one part on, and one part under the (001) mirror plane. The space group remains to be $P 6_{3} / m m c$. The division is shown in Fig. 2. Taking into account the thermal motion of the I^{-}ions and the change in the direction of the elongation of the $\mathrm{CrI}_{6}{ }^{4-}$ octahedra, all of these results in a banana-shaped distribution of the I^{-}ions (see Fig. 2).
Refinement of this model leads to $R_{\text {total }}=$ 0.041 and $R_{\text {profic }}=0.095$. Refinement of all parameters including individual isotropic thermal parameters with this model con-
verges at $R_{\text {total }}=0.038$ and $R_{\text {profile }}=0.092$. The results of this refinement are given in Table I. The observed and calculated profiles are depicted in Fig. 1a. Some distances and bond angles of both models are listed in Tables II and III.

77 K

The space group of $\beta-\mathrm{CsCrI}_{3}, \quad \mathrm{Pbcn}$, determined from Weissenberg photographs, restricts the possibilities of elongation of the octahedra in the unit cell, thus simplifying the postulation of a model for the refinement. The deviation from the α CsCrI_{3} structure is not very large as can be seen from Fig. 1. Therefore the refinement was started with a model in which one of the octahedron axes is 10% longer than the other two. Full matrix refinement of posi-

TABLE I
Unit-Cell Dimensions, Positional and Thermal Parameters of $\alpha-\mathrm{CsCri}_{3}$ at Room Temperature and of $\beta-\mathrm{CsCrI}_{3}$ At 77 and 1.2 K

	x / a	$y / 6$	z / c	b^{a}
$\alpha-\mathrm{CsCrI}_{3}$, space group $P 6_{3} / m m c$, room temperature$a=8.127(1) \AA, c=6.944(1) \AA$				
Cs	$\frac{1}{3}$	$\frac{2}{3}$	0.75	4.1(3)
Cr	0	0	0	2.4(2)
I(1)	0.170(2)	0.339(4)	0.226(4)	
I(2)	0.153(3)	0.305(7)	0.25	2.7(4)
$\beta-\mathrm{CsCrI}_{3}$, space group $\mathrm{Pbcn}, 77 \mathrm{~K}$$a=8.107(1) \AA, b=13.793(2) \AA, c=6.914(1) \AA$				
Cs	0	$0.333(2)$	0.25	$1.3(5)$
Cr	0	0	0	0.0(3)
I(1)	0.249(3)	0.084(1)	0.213(1)	0.8(3)
I(2)	0	0.160(1)	0.25	1.6(7)
$\begin{gathered} \beta-\mathrm{CsCrI}_{3} \text {, space group Pbcn, } 1.2 \mathrm{~K} \\ a=8.102(1) \AA, b=13.792(2) \AA, c=6.900(1) \AA \end{gathered}$				
Cs	0	$0.336(1)$	0.25	1.1(4)
Cr	0	0	0	0.2(2)
I(1)	0.247(1)	0.085(1)	0.217(1)	0.1(2)
I(2)	0	0.158(1)	0.25	0.3(4)
Magnetic moment: $\mu_{x}=3.16$ (3) μ_{B}				

[^0]TABLE II
Some Distances (\AA) and Angles $\left({ }^{\circ}\right)$ For $\alpha-\mathrm{CsCrI}_{3}$ with a Spherical
Distribution of the I Ions

$\mathrm{Cs}-\mathrm{I}$	$4.210(2) 6 x$	$\mathrm{Cr}-\mathrm{I}-\mathrm{Cr}$	$73.84(9)$
$\mathrm{Cs}-\mathrm{I}$	$4.064(4) 6 x$	$\mathrm{I}-\mathrm{Cr}-\mathrm{I}$	$87.65(7)$
$\mathrm{Cr}-\mathrm{I}$	$2.890(3) 6 x$	$\mathrm{I}-\mathrm{Cr}-\mathrm{I}$	$92.35(7)$
$\mathrm{I}-\mathrm{I}$	distances:		
	$4.00-4.17$		

tional and isotropic thermal parameters converges at $R_{\text {total }}=0.065$ and $R_{\text {profie }}=$ 0.132 . The relatively large R values as compared to the R values of the other refinements are caused by the contamination of the sample. The results of the refinement are listed in Table I and Fig. 1b shows the calculated and observed profiles.

1.2 K

Because of the existence of a strong 001 reflection in the diagram recorded at 1.2 K , it is evident that $\beta-\mathrm{CsCrI}_{3}$ must consist of ferromagnetic (001) planes which are coupled antiferromagnetically in the z-direction. Refinement of all parameters including the magnetic moment parameters in the three orthorhombic directions shows the moment to be parallel to the a-axis. The

TABLE III
Some Distances (\AA) and Bond Angles (${ }^{\circ}$) For $\alpha-\mathrm{CsCrI}_{3}$ with a Banana-Shaped Distribution of the I- Ions Based on Statistically Averaged β - CsCrI_{3} Structure a

$\mathrm{Cs}-\mathrm{I}(1)$	$4.07(2) 4 x$	$\mathrm{Cr}-\mathrm{I}(1)-\mathrm{Cr}$	$71.8(6)$
$\mathrm{Cs}-\mathrm{I}(1)$	$4.03(3) 2 x$	$\mathrm{Cr}-\mathrm{I}(2)-\mathrm{Cr}$	$77.9(14)$
$\mathrm{Cs}-\mathrm{I}(1)$	$4.31(3) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(1)$	$84.7(9)$
$\mathrm{Cs}-\mathrm{I}(2)$	$4.07(3) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(1)$	$95.3(9)$
$\mathrm{Cs}-\mathrm{I}(2)$	$4.30(3) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(2)$	$85.0(9)$
$\mathrm{Cr}-\mathrm{I}(1)$	$2.76(2) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(2)$	$95.0(9)$
$\mathrm{Cr}-\mathrm{I}(1)$	$3.05(3) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(2)$	$88.9(8)$
$\mathrm{Cr}-\mathrm{I}(2)$	$2.85(3) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(2)$	$91.1(8)$

[^1]

Fig. 1. Calculated and observed profiles for CsCrI_{3} at room temperature (a), 77 K (b), and 1.2 K (c). The large extra reflections in the diagram of 1.2 K are due to the cryostat.
magnetic moment parameters of the other two directions converge to values less than twice the standard deviation ($\mu_{y}=0.36(45)$, $\left.\mu_{z}=-0.33(20) \mu_{\mathrm{B}}\right)$. Full matrix refinement of positional and isotropic thermal parameters and a magnetic moment parameter in the a-direction only to convergence at $R_{\text {total }}=0.052$,

$$
\begin{aligned}
R_{\text {magnetic }}= & \sum_{i} \mid I_{i m}(\mathrm{obs}) \\
& -I_{i m}(\mathrm{calc}) \mid / \sum_{i} I_{i m}(\mathrm{obs})=0.058, \\
R_{\text {nuclear }}= & \sum_{i} \mid I_{i n}(\mathrm{obs}) \\
& -I_{i n}(\mathrm{calc}) \mid / \sum_{i} I_{i n}(\mathrm{obs})=0.051, \\
& \\
& - \\
& \text { A }
\end{aligned}
$$

Fig. 2. (A) The distribution of the I^{-}ion in $\alpha-\mathrm{CsCrI}_{3}$ due to a local Jahn-Teller distortion. (B) The bananashaped distribution of the I^{-}ions resulting from thermal motion and a change in the direction of elongation of the $\mathrm{CrI}_{6}{ }^{4-}$ octahedra.
and $R_{\text {profile }}=0.097$. The results of the refinement are given in Table I and Fig. 1c and some distances and bond angles are listed in Table IV.

Discussion

Jahn and Teller (14) showed that nonlinear molecules with a degenerate electronic ground state are unstable with respect

TABLE IV
Some Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in $\beta-\mathrm{CsCrI}_{3}$ At 1.2 K

$\mathrm{Cs}-\mathrm{I}(1)$	$4.01(2) 4 x$	$\mathrm{Cr}-\mathrm{I}(1)-\mathrm{Cr}$	$73.0(2)$
$\mathrm{Cs}-\mathrm{I}(1)$	$3.98(1) 2 x$	$\mathrm{Cr}-\mathrm{I}(2)-\mathrm{Cr}$	$76.8(4)$
$\mathrm{Cs}-\mathrm{I}(1)$	$4.36(1) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(1)$	$88.0(3)$
$\mathrm{Cs}-\mathrm{I}(2)$	$4.05(1) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(1)$	$92.0(3)$
$\mathrm{Cs}-\mathrm{I}(2)$	$4.24(1) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(2)$	$90.3(3)$
$\mathrm{Cr}-\mathrm{I}(1)$	$2.76(1) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(2)$	$89.7(3)$
$\mathrm{Cr}-\mathrm{I}(1)$	$3.04(1) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(2)$	$95.6(3)$
$\mathrm{Cr}-\mathrm{I}(2)$	$2.78(1) 2 x$	$\mathrm{I}(1)-\mathrm{Cr}-\mathrm{I}(2)$	$84.4(3)$

I-I distances: 3.91(2)-4.31(1)
to some distortion, e.g., small displacements of the ligands surrounding the Jahn-Teller active atom. These small displacements of the I^{-}ions change the crystal field acting on the electrons of the Cr^{2+} ion. In the crystal these displacements are coupled by elastic forces giving rise to an effective interaction between the Cr^{2+} ions. The cooperative operation leads to a spontaneous distortion of the entire lattice. For CsCrI_{3} the distortion leads to an orthorhombic unit cell ($T<$ 150 K) and for RbCrI_{3} to a monoclinic unit cell.

Both structures are still very much related to the BaNiO_{3} structure. They consist of chains of face-sharing $\mathrm{CrI}_{6}{ }^{4-}$ octahedra along the c-axis as BaNiO_{3}. Due to distortions of the octahedra the 6_{3} axis of the BaNiO_{3} structure does not occur in the lowtemperature forms of CsCrI_{3} and RbCrI_{3}. The displacements of the atoms in $\beta-\mathrm{CsCrI}_{3}$ and β - RbCrI_{3} from the positions in the BaNiO_{3} structure can be described qualitatively by a canting of the triangles, formed by three common I^{-}ions of two adjacent Cr^{2+} ions in a chain. In the BaNiO_{3} structure this triangle of I^{-}ions is situated on the (001) mirror plane. The distortion in $\beta-\mathrm{CsCrI}_{3}$ is obtained by a canting along the 1000 direction of the hexagonal unit cell of BaNiO_{3}. The distortion in $\beta-\mathrm{RbCrI}_{3}$ is realized by a canting along the $|110|$ direction of the hexagonal unit cell of BaNiO_{3}. These two cantings are shown in Fig. 3 and the result of this canting for $\beta-\mathrm{CsCrI}_{3}$ in Fig. 4. The distortion in $\beta-\mathrm{CsCrI}_{3}$ is very easily realized by

Fig. 3. Canting of the two iodine triangles of a $\mathrm{CrI}_{6}{ }^{4-}$ octahedron along $|110|$ for $\beta-\mathrm{RbCrI}_{3}$ (left) and along $|100|$ for $\beta-\mathrm{CsCrI}_{3}$ (right). The Cr^{2+} ion is represented by a solid circle.

FIg. 4. The distortion found for the $\mathrm{CrI}_{6}{ }^{4-}$ octahedra in $\beta-\mathrm{CsCrI}_{3}$ at 1.2 K .
a shift of I^{-}layers in the $+z$ - or $-z$-direction as is depicted in Fig. 5. With this shift of I^{-} planes the octahedra are deformed as indicated above. Because whole planes are shifted the structure loses its C centering.

Because for the high-temperature form, $\alpha-\mathrm{CsCrI}_{3}$, elongated octahedra were also expected, a statistically averaged $\beta-\mathrm{CsCrI}_{3}$ model was introduced. Although the R values are not much lowered by the introduction of elongated octahedra, the shifts of the I^{-}ions are significant. As is shown in Table III these shifts result in $\mathrm{Cr}-\mathrm{I}$ distances comparable to those in $\beta-\mathrm{CsCrI}_{3}$ (Table IV). The positional parameters agree reasonably well with the positions of the I^{-}ions in β CsCrI_{3} converted to a hexagonal unit cell:
$\mathrm{I}(1) \quad x / a=0.167(1)$,

$$
\begin{aligned}
& y / b=0.334(1), \quad z / c=0.217(1), \\
& \mathrm{I}(2) \quad x / a=0.156(1), \\
& y / b=0.313(1), \\
& z / c=0.25 .
\end{aligned}
$$

X-Ray single-crystal diffraction measurements on $\alpha-\mathrm{CsCrI}_{3}$ at room temperature yielded similar and more accurate results.
These results shall be published elsewhere.
It can be concluded that there is strong evidence for the existence of elongated octahedra above the phase transition.

Fig. 5. The structure of $\alpha-\mathrm{CsCrI}_{3}$ in an orthorhombic setting. The solid circles represent Cr^{2+} ions at $z=0$ and $z=\frac{1}{2}$, the large open circles I^{-}ions, and the small open circles Cs^{+}ions. Ions at heights $\frac{1}{4}$ and $\frac{3}{4}$ are distinguished as full and broken circles. The $\beta-\mathrm{CsCrI}_{3}$ structure can be derived from this figure by shifting the planes (indicated by the broken lines) with the I^{-}ions marked + into the $+z$-direction and those with I^{-}ions marked - into the $-z$-direction.

References

1. J. J. Lander, Acta Crystallogr. 4, 148 (1951).
2. H. Brasseur and L. Pauling, J. Amer. Chem. Soc. 60, 2886 (1938).
3. G. L. McPherson et al., Inorg. Chem. 14, 1831 (1975).
4. G. A. Gehring and K. A. Gehring, Rep. Progr. Phys. 38, 1 (1975).
5. A. W. Schlueter, R. A. Jacobson, and R. E. Rundle, Inorg. Chem. 5, 277 (1966).
6. W. J. Crama, G. C. Verschoor, and W. J. A. MaAskant, Acta Crystallogr. Sect. B 34, 1973 (1978).
7. W. J. Crama, G. C. Verschoor, and W. J. A. MaAskant, Acta Crystallogr., in press.
8. H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969).
9. G. E. BACON, Compilation (1977).
10. R. E. Watson and A. J. Freeman, Acta Crystallogr. 14, 27 (1961).
11. N. W. Allcock, C. F. Putnik, and S. L. Holt, Inorg. Chem. 15, 3175 (1976).
12. P. Koehler, Dissertation, Marburg/Lahn (1976).
13. S. Hirotsu, J. Phys. C 10, 967 (1977).
14. H. A. Jahn and E. Teller, Proc. Roy. Soc. London Ser. A 161, 220 (1937).
15. "International Tables for \boldsymbol{X}-Ray Crystallography," Vol. 2, p. 241, Kynoch Press, Birmingham (1959).
16. H. W. Zandbergen, G. C. Verschoor, and D. J. W. Ijdo, Acta Crystallogr. B35, 1425 (1979).

[^0]: ${ }^{a} b=8 \pi^{2} U_{s}^{2}(15)$.
 ${ }^{b}$ Occupation.

[^1]: ${ }^{a}$ The distances and angles are listed in the same sequence as those for $\beta-\mathrm{CsCrI}_{3}$ in Table IV.

